730 research outputs found

    NITROGEN CARRY-OVER IMPACTS IN IRRIGATED COTTON PRODUCTION, SOUTHERN HIGH PLAINS OF TEXAS

    Get PDF
    A dynamic optimization model which introduces an intertemporal nitrate-nitrogen residual function is used to derive and evaluate nitrogen fertilizer optimal decision rules for irrigated cotton production in the Southern High Plains of Texas. Results indicate that optimal nitrogen applications critically depend on initial nitrate-nitrogen levels and nitrogen-to-cotton price ratios. Also, the results indicate that single-year optimization leads to suboptimal nitrogen applications, which helps explain long-term cotton yield declines in the Southern High Plains of Texas; but single-year optimization does not significantly impact the net present value of returns of irrigated cotton operations.Crop Production/Industries,

    Validation of an ocean shelf model for the prediction of mixed-layer properties in the Mediterranean Sea west of Sardinia

    Get PDF
    The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated through the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (generic length scale) scheme Umlauf and Burchard (2003) in four different set-ups. All ROMS forecasts were validated against the observations which were taken during the REP14-MED survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions through data assimilation provided the best agreement of the predicted mixed-layer properties with the time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing, which was melded with real observations, and by the application of the k-ω vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wave number band; the observed sub-mesoscale variability was not reproduced by ROMS

    Reverberation Mapping Results from MDM Observatory

    Get PDF
    We present results from a multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from around the world. We measure broad line region (BLR) radii and black hole masses for six objects. A velocity-resolved analysis of the H_beta response shows the presence of diverse kinematic signatures in the BLR.Comment: To appear in the Proceedings of the IAU Symposium No. 267: Co-Evolution of Central Black Holes and Galaxies, Rio de Janeiro, 200

    History of Hydrogen Reionization in the Cold Dark Matter Model

    Full text link
    We calculate the reionization history in Cold Dark Matter (CDM) models. The epoch of the end of reionization and the Thomson scattering optical depth to the cosmic microwave background depend on the power spectrum amplitude on small scales and on the ionizing photon emissivity per unit mass in collapsed halos. We calibrate the emissivity to reproduce the measured ionizing background intensity at z=4. Models in which all CDM halos have either a constant emissivity or a constant energy emitted per Hubble time, per unit mass, predict that reionization ends near z~6 and the optical depth is in the range 0.05 < tau_e < 0.09, consistent with WMAP results at the 1 to 2 sigma level. If the optical depth is as high as 0.17 (as suggested by WMAP), halos of velocity dispersion ~ 3-30 km/s at z>15 must have ionizing emissivities per unit mass larger by a factor >~ 50 compared to the more massive halos that produce the ionizing emissivity at z=4. This factor increases to 100 if the CDM power spectrum amplitude is required to agree with the Croft et al. (2002) measurement from the Lyman alpha forest. If tau_e >~ 0.17 were confirmed, a higher ionizing emissivity at z>15 compared to z=4 might arise from an enhanced star formation rate or quasar abundance per unit mass and an increased escape fraction for ionizing photons; the end of reionization could have been delayed to z~6 because of the suppression of gas accretion and star formation in low-mass halos as the medium was reionized.Comment: 19 pages, 4 figues, submitted to Ap

    Tourette syndrome as a motor disorder revisited – Evidence from action coding

    Get PDF
    Because tics are the defining clinical feature of Tourette syndrome, it is conceptualized predominantly as a motor disorder. There is some evidence though suggesting that the neural basis of Tourette syndrome is related to perception–action processing and binding between perception and action. However, binding processes have not been examined in the motor domain in these patients. If it is particularly perception–action binding but not binding processes within the motor system, this would further corroborate that Tourette syndrome it is not predominantly, or solely, a motor disorder. Here, we studied N = 22 Tourette patients and N = 24 healthy controls using an established action coding paradigm derived from the Theory of Event Coding framework and concomitant EEG-recording addressing binding between a planned but postponed, and an interleaved immediate reaction with different levels of overlap of action elements. Behavioral performance during interleaved action coding was normal in Tourette syndrome. Response locked lateralized readiness potentials reflecting processes related to motor execution were larger in Tourette syndrome, but only in simple conditions. However, pre-motor processes including response preparation and configuration reflected by stimulus-locked lateralized readiness potentials were normal. This was supported by a Bayesian data analysis providing evidence for the null hypothesis. The finding that processes integrating different action-related elements prior to motor execution are normal in Tourette syndrome suggests that Tourette it is not solely a motor disorder. Considering other recent evidence, the data show that changes in “binding” in Tourette syndrome are specific for perception–action integration but not for action coding

    Observational Limits on Type 1 AGN Accretion Rate in COSMOS

    Full text link
    We present black hole masses and accretion rates for 182 Type 1 AGN in COSMOS. We estimate masses using the scaling relations for the broad Hb, MgII, and CIV emission lines in the redshift ranges 0.16<z<0.88, 1<z<2.4, and 2.7<z<4.9. We estimate the accretion rate using an Eddington ratio L_I/L_Edd estimated from optical and X-ray data. We find that very few Type 1 AGN accrete below L_I/L_Edd ~ 0.01, despite simulations of synthetic spectra which show that the survey is sensitive to such Type 1 AGN. At lower accretion rates the BLR may become obscured, diluted or nonexistent. We find evidence that Type 1 AGN at higher accretion rates have higher optical luminosities, as more of their emission comes from the cool (optical) accretion disk with respect to shorter wavelengths. We measure a larger range in accretion rate than previous works, suggesting that COSMOS is more efficient at finding low accretion rate Type 1 AGN. However the measured range in accretion rate is still comparable to the intrinsic scatter from the scaling relations, suggesting that Type 1 AGN accrete at a narrow range of Eddington ratio, with L_I/L_Edd ~ 0.1.Comment: Accepted for pulication in ApJ. 7 pages, 5 figures, table 1 available on reques

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database

    Get PDF
    We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to full width half maximum) for the line width and by measuring the line width in the variable part of the spectrum. Accurate line-width measurement depends critically on avoiding contaminating features, in particular the narrow components of the emission lines. We find that the precision (or random component of the error) of reverberation-based black hole mass measurements is typically around 30%, comparable to the precision attained in measurement of black hole masses in quiescent galaxies by gas or stellar dynamical methods. Based on results presented in a companion paper by Onken et al., we provide a zero-point calibration for the reverberation-based black hole mass scale by using the relationship between black hole mass and host-galaxy bulge velocity dispersion. The scatter around this relationship implies that the typical systematic uncertainties in reverberation-based black hole masses are smaller than a factor of three. We present a preliminary version of a mass-luminosity relationship that is much better defined than any previous attempt. Scatter about the mass-luminosity relationship for these AGNs appears to be real and could be correlated with either Eddington ratio or object inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication in The Astrophysical Journa
    corecore